Project no.: 511254 (STREP)

SEDBARCAH

SEDiment BioBARriers for Chlorinated Aliphatic Hydrocarbons in ground water reaching surface water

Reactive Transport & Biodegradation Model (Part I)

Harald Kalka

Short Lecture at the Meeting Wageningen, January 2006

Start date of project: 01/01/2005 Lead contractor for Work Package 5 (Modeling): Duration: 2 years UIT GmbH Dresden

Reactive Transport and CAH-Biodegradation Model

H. Kalka, UIT Gmbh Dresden, Germany

Operator Splitting

Electron Balance

anaerobic

 $CHCl=CHCl + H^{+} + 2e^{-} \rightarrow CHCl=CH_{2} + Cl^{-}$ $CH_{2}O + H_{2}O \rightarrow CO_{2} + 4H^{+} + 4e^{-}$

 $DCE + \frac{1}{2}C_{org} + \frac{1}{2}H_2O \rightarrow VC + \frac{1}{2}CO_2 + H^+ + Cl^-$

Environmental Factors

 Temperature (ARRHENIUS behavior)
 pH microorgs prefer pH = 6.5..7.5 but: production of org. acids, HCI
 ORP (anaerobic / aerobic)
 Moisture Content
 Nutrients C:N:P = 120:10:1
 Inhibiting or Toxic Compounds

High Flexibility

number of layers (compartments)	unlimited
number of cells per layer	unlimited
number of chemical elements (PhreeqC)	unlimited
number of inflow compositions	unlimited

Clearly arranged Input / Output structure

Stop-and-Go (calculation with interrupts)

Open for future extensions

Input Data (part I)

time-step width	Δt	h	
end time	Т	h	
cross section area	Α	m ²	
number of layers	N _L		
inflow solution	inp.sol		
Global Data		-	
Data for each Laver			

cell number	N		
cell length	Δx	m	
porosity	3		
dispersity	$\alpha_{\rm L}$	m	
bulk density	$ ho_b$	g/cm ³	
org. carbon contentent	f _{oc}		
biomass "ana" for t=0	X ^{ana}	µg/L	
biomass "aer" for t=0	Xaer	μg/L	
initial solution fot t=0	file: cell.sol		

Input Data (part II)

temperature		temp	°C			5 <u>7</u>
pH-value		рН			Ac	
ORP		pe		J.	que	
PCE		c	mM		sno	
TCE	CAH's	c	mM		SC	n gi
cis-DCE		c	mM		olut	
VC		c	mM		ion	
ETH		C	mM		Da	
C _{org} (dissolv	/ed organic carbon)	c	mM		Ita	
DIC (dissolv	ved inorganic carbon)	c	mM			
CI		c	mM		-	
DO (dissolv	/ed oxygen)	C	mM		f	ile: cell.sol
other anions	: S(VI), S(-II), N(V),	С	mM		f	file: inp.sol
other cations	:: Ca, Mg, Na, N(-III),	c	mM			

Example Calculations

A pure advection
 B advection + dispersion
 C biodegradation with constant inflow

- **D** biodegradation with time-dependent inflow
 - biodegradation with population dynamics

... other examples

Wageningen / January 2006

E

F

Kinetic Parameter Set (Example)

anacrohic	k _i	K _i	K _{Hi}	$\lambda = k_i X / K_i$
anaerubic	µmol/mgP/d	μM	μM	d -1
PCE → TCE	12	3.0		120
TCE → DCE	124	2.0	900	1860
DCE → VC	20	1.9	1000	316
VC → ETH	5	100	1000	1.5
			data. Vu	9 Comprini 200/

Xana	mgP/L	30
Yana	mgP/µM Cl	0.006
k _{death}	d -1	0.024

data: Yu & Semprini 2004

Data in literature varies strongly !

More Info: SEDBARCAH project Deliverable D11 www.aquac.de/model.html

End of presentation.